Compact Power Relays
 MK

A Wide Variation of Octal Pin Power Relays

- Encased Relays unified to an AC4 rating (100/110 VAC at $50 / 60 \mathrm{~Hz}$ and $200 / 220$ VAC at $50 / 60 \mathrm{~Hz}$).
- Easy to install, wire, and use.
- Highly durable with a life of over 5,000,000 mechanical operations.
- Extensive product lineup: Standard models, encased models, special contact models, bifurcated contact models, double-winding latching models, and more.

Refer to the Common Relay Precautions.

Model Number Structure

Configuration (Models certified for safety standards are included. Refer to page 2)

Classification	Structure Number of poles	Encased models
		Relays with Plug-in Terminals
Standard models	2	MK2P
	3	MK3P
Bifurcated contacts	2	MK2ZP
	3	MK3ZP
Models with built-in mechanical operation indicators	2	MK2PA
	3	MK3PA
Models with built-in operation indicator lights	2	MK2PN
	3	MK3PN
Special internal connection models	2	MK2P-2 and MK2ZP-2
	3	MK3P-2, MK3ZP-2, MK3P-5, and MK3ZP-5
Models with built-in arc barriers	3	MK3LP
Models with built-in diodes	2	MK2P-DO
	3	MK3P-DO
Models certified for safety standards	2	MK2P-US and MK2P2-US
	3	MK3P-US, MK3P2-US, and MK3P5-US

Note: 1. Refer to the MKK Electromagnetic Latching Relays.
2. If an AC rated voltage is specified for models with built-in diodes, the diode will act as a varistor.

Ordering Information

When your order, specify the rated voltage.

List of Models

Encased Models and Models with Plug-in Terminals

Number of poles Classification			2 poles		3 poles	
		Model	Rated voltage (V)	Model	Rated voltage (V)	
Standard models		MK2P	6, 12, 24, 50, 100/110, or 200/220 VAC	MK3P	6, 12, 24, 50, 100/110, or 200/220 VAC	
		6, 12, 24, 48, or 100 VDC	6, 12, 24, 48, or 100/110 VDC			
Bifurcated contacts			MK2ZP	24, 100/110, or 200/220 VAC	MK3ZP	6, 12, 24, 50, 100/110, or 200/220 VAC
		12, 24, 48, or 100 VDC		6, 12, 24, 48, or 100 VDC		
Models with built-in diodes		MK2P-DO	$6,12,24,48$, or 100 VDC	MK3P-DO	12, 24,48 , or 100 VDC	
Models with built-in operation indicators		MK2PA	100/110 or 200/220 VAC	MK3PA	24, 100/110, or 200/220 VAC	
		24, 48, or 100 VDC	24, 48, or 100 VDC			
Models with built-in operation indicators			MK2PN	6, 12, 24, 50, 100/110, or 200/220 VAC	MK3PN	6, 12, 24, 50, 100/110, or 200/220 VAC
		$6,12,24,48$, or 100 VDC		12, 24,48 , or 100 VDC		
Models with built-in arc barriers		---	---	MK3LP	12, 24, 100/110, or 200/220 VAC	
		24, 48, or 100 VDC				
Special internal connection models	Single-contacts		MK2P-2	6, 24, 50, 100/110, or 200/220 VAC	MK3P-2	6, 24, 50, 100/110, or 200/220 VAC
		6, 12, 24, 48, or 100 VDC		12, 24,48 , or 100 VDC		
		---	---	MK3P-5	12, 24, 100/110, or 200/220 VAC	
					6, 12, 24, 48, or 100 VDC	
	Bifurcated contacts	MK2ZP-2	24, 100/110, or 200/220 VAC	MK3ZP-2	24, 100/110 or 200/220 VAC	
			24 VDC		6, 12, 24, 48, or 100 VDC	
		---	---	MK3ZP-5	24, 100/110, or 200/220 VAC	
					24 VDC	

Models certified for safety standards
Encased Models and Models with Plug-in Terminals

Number of poles Classification	2 poles		3 poles	
	Model	Rated voltage (V)	Model	Rated voltage (V)
Standard models (Ag contacts)	MK2P-US	100 or 200 VAC	MK3P-US	200 VAC
		24 VDC		
Special internal connection models (Ag contacts)	MK2P2-US	12 VDC	MK3P2-US	200/(220) VAC
				24 VDC
			MK3P5-US	24 or 200/(220) VAC
				24 VDC

Ratings and Specifications

Ratings (Refer to page 3 for models certified for safety standards.)
Operating Coil
MK2(P or P-2), MK3(P, P-2, or P-5), MK2ZP(-2), MK \square PA, and MK \square P-DO

Item Rated voltage (V)		Rated current (mA)		Coil resistance (Ω)	Coil inductance (H)		Must-operate voltage (V)	Must-release voltage (V)	Maximum voltage (V)	Power consumption (VA, W)
		50 Hz	60 Hz		$\begin{aligned} & \text { Armature } \\ & \text { OFF } \end{aligned}$	Armature ON				
AC	6	404	360	5.3	0.028	0.041	80\% max.	30\% min.	110\%	Approx. 1.9 to Approx. 2.2 (at 60 Hz)
	12	202	180	21.5	0.115	0.165				
	24	98	88	91	0.422	0.678				
	50	43.6	39	420	1.95	3.2				
	*100/110	22.4/24.7	19/21	1,620	9.0	13.2				Approx. 1.9 to
	*200/220	11.7/12.9	10/11	7,100	33.9	49.6				2.4 (at 60 Hz)
DC	6	255		23.5	0.14	0.23		10\% min.		Approx. 1.5
	12			95	0.56	0.87				
	24	56		430	2.82	4.46				
	48	29.5		1,630	10.99	16.52				
	100	14.7		6,800	41.46	66.34				

MK3ZP(-2 and -5) and MK3LP

Rated voltage (V)		Rated current (mA)		Coil resistance (Ω)	Power consumption (VA, W)
		50 Hz	60 Hz		
AC	6	500	445	3.8	$\begin{gathered} \text { Approx. } 2.8 \text { (at } \\ 60 \mathrm{~Hz}) \end{gathered}$
	12	258	230	16.2	
	24	130	116	62	
	50	63	56	280	
	*100/110	27.1/29.8	23.1/25.4	1,300	$\begin{aligned} & \text { Approx. } 2.3 \text { to } \\ & 2.8 \text { (at } 60 \mathrm{~Hz} \text {) } \end{aligned}$
	*200/220	13.6/14.9	11.5/12.7	5,900	
DC	6	302		19.9	Approx. 1.9
	12	156		77	
	24	79		303	
	48	39		1,230	
	100	18.9		5,300	

MK $\square \mathbf{P N}$

Note: 1. The rated current and coil resistance are measured at a coil temperature of $23^{\circ} \mathrm{C}$ with tolerances of $+15 \% /-20 \%$ for the $A C$ rated current and $\pm 15 \%$ for the $D C$ coil resistance.
2. The AC coil resistance and coil inductance values are reference values only
3. Operating characteristics were measured at a coil temperature of $23^{\circ} \mathrm{C}$.
4. The maximum allowable voltage is the maximum value of the allowable voltage fluctuation range for the Relay coil operating power supply and was measured at an ambient temperature of $23^{\circ} \mathrm{C}$. There is no continuous allowance.

* These are for a 4 rating specification.

Contact Ratings

	MK2P(-2), MK2PN, MK2PA, and MK2P-DO		MK3P(-2 and -5), MK3PN, MK3PA, and MK3P-DO		MK2ZP(-2) and MK3ZP(-2 and -5)		MK3LP	
Load Item	Resistive load	Inductive load $\cos \phi=0.4$, L/R=7 ms	Resistive load	$\left.\begin{array}{l} \text { Inductive load } \\ (\cos \phi=0.4, \\ L / R=7 \mathrm{~ms} \end{array}\right)$	Resistive load	Inductive load $\cos \phi=0.4$, L/R = 7 ms	Resistive load	Inductive load $\cos \phi=0.4$, L/R = 7 ms
Contact structure	Single				Bifurcated		Single	
Contact materials	Ag				AgNi		Ag	
Rated load	$\begin{aligned} & 5 \mathrm{~A} \text { at } 220 \mathrm{VAC} \\ & 3 \mathrm{~A} \text { at } 24 \mathrm{VDC} \end{aligned}$	$\begin{aligned} & 2 \mathrm{~A} \text { at } 220 \mathrm{VAC} \\ & 2.5 \mathrm{~A} \text { at } 24 \mathrm{VDC} \end{aligned}$	$\begin{aligned} & 3 \mathrm{~A} \text { at } 220 \mathrm{VAC} \\ & 2 \mathrm{~A} \text { at } 24 \mathrm{VDC} \end{aligned}$	$\begin{aligned} & \text { 1.2 } \mathrm{A} \text { at } 220 \mathrm{VAC} \\ & 1.5 \mathrm{~A} \text { at } 24 \mathrm{VDC} \end{aligned}$	$\begin{aligned} & 3 \mathrm{~A} \text { at } 220 \mathrm{VAC} \\ & 2 \mathrm{~A} \text { at } 24 \mathrm{VDC} \end{aligned}$	$\begin{aligned} & \text { 1.2 } \mathrm{A} \text { at } 220 \mathrm{VAC} \\ & 1.5 \mathrm{~A} \text { at } 24 \mathrm{VDC} \\ & \hline \end{aligned}$	$\begin{aligned} & 5 \mathrm{~A} \text { at } 220 \mathrm{VAC} \\ & 3 \mathrm{~A} \text { at } 24 \mathrm{VDC} \end{aligned}$	$\begin{aligned} & 3 \mathrm{~A} \text { at } 220 \mathrm{VAC} \\ & 1.8 \mathrm{~A} \text { at } 24 \mathrm{VDC} \end{aligned}$
Rated carry current	5 A		3 A		3 A		5 A	
Maximum contact voltage	$\begin{aligned} & 250 \text { VAC } \\ & 250 \text { VDC } \end{aligned}$		$\begin{aligned} & 250 \mathrm{VAC} \\ & 250 \mathrm{VDC} \end{aligned}$		$\begin{aligned} & 250 \mathrm{VAC} \\ & 250 \mathrm{VDC} \end{aligned}$		$\begin{aligned} & 250 \text { VAC } \\ & 250 \text { VDC } \end{aligned}$	
Maximum contact current	5 A	5 A	3 A	3 A	3 A	3 A	5 A	5 A
Maximum switching capacity (reference value)	$\begin{aligned} & 1,100 \mathrm{VA} \\ & 72 \mathrm{~W} \end{aligned}$	$\begin{gathered} 440 \mathrm{VA} \\ 60 \mathrm{~W} \\ \hline \end{gathered}$	$\begin{gathered} 660 \mathrm{VA} \\ 48 \mathrm{~W} \end{gathered}$	$\begin{gathered} 260 \mathrm{VA} \\ 35 \mathrm{~W} \\ \hline \end{gathered}$	$\begin{gathered} 660 \mathrm{VA} \\ 48 \mathrm{~W} \end{gathered}$	$\begin{gathered} 260 \mathrm{VA} \\ 35 \mathrm{~W} \\ \hline \end{gathered}$	$\begin{gathered} 1,100 \text { VA } \\ 72 \mathrm{~W} \end{gathered}$	$\begin{aligned} & 660 \mathrm{VA} \\ & 42 \mathrm{~W} \end{aligned}$

Ambient operating tem- perature	-10 to $40^{\circ} \mathrm{C}$ (with no icing or condensation)
Ambient operating hu- midity	5% to 85%

Characteristics

Item		Classification	Bifurcated contacts	Encased models
Contact resistance*1			$25 \mathrm{~m} \Omega$ max.	$50 \mathrm{~m} \Omega$ max.
Operation time*2			AC: 20 ms max., DC: 30 ms max .	
Release time*2			$20 \mathrm{~ms} \mathrm{max.}, \mathrm{(*440} \mathrm{~ms} \mathrm{max)}$.	
Maximum operating frequency		Mechanical	18,000 operations/h	
		Rated load	1,800 operations/h	
Insulation resistance*3			$100 \mathrm{M} \Omega \mathrm{min}$.	
Dielectric strength	2 poles	Between coil and contacts	2,000 VAC at $50 / 60 \mathrm{~Hz}$ for 1 min .	
		Between contacts od different polarity		
		Between contactis of the same polarity	1,000 VAC at $50 / 60 \mathrm{~Hz}$ for 1 min .	
	3 poles	Between coil and contacts	$1,500 \mathrm{VAC}$ at $50 / 60 \mathrm{~Hz}$ for 1 min .	
		Between contacts of different polarity		
		Between contactis of the same polarity	1,000 VAC at $50 / 60 \mathrm{~Hz}$ for 1 min .	
Vibration resistance		Destruction	10 to 55 to $10 \mathrm{~Hz}, 0.75-\mathrm{mm}$ single amplitude (1.5-mm double amplitude)	
		Malfunction	10 to 55 to $10 \mathrm{~Hz}, 0.5-\mathrm{mm}$ single amplitude (1-mm double amplitude)	
Shock resistance		Destruction	$1,000 \mathrm{~m} / \mathrm{s}^{2}$	
		Malfunction	$100 \mathrm{~m} / \mathrm{s}^{2}$	
Endurance		Mechanical	5,000,000 operations min. (operating frequency: 18,000 operations/hr)	
		Electrical*5	500,000 operations min. (rated load, switching frequency: 1,800 operations/h)	
Failure rate P level (reference value*6)			$100 \mu \mathrm{~A}$ at 1 VDC	10 mA at 1 VDC
Weight			Approx. 85 g	

Note: The above values are initial values.
*1. Measurement conditions: 1 A at 5 VDC using the voltage drop method
*2. Measurement conditions: With rated operating power applied, not including contact bounce.
Ambient temperature condition: $23^{\circ} \mathrm{C}$
*3. Measurement conditions: For 500 VDC applied to the same location as for dielectric strength measurement.
*4. This value is for models with built-in diodes.
*5. Ambient temperature condition: $23^{\circ} \mathrm{C}$
*6. This value was measured at a switching frequency of 60 operations per minute.

Models certified for safety standards

UL and CSA-certified models are also available. The ratings for these models are not the same as our standard models for Japan.

UL-certified Models (File No. E41515) ©
CSA-certified Models (File No. LR35535) (1)

Model	Num- ber of poles	Coil ratings	Con- tacts	Contact ratings	Number of test opera- tions
MK	2	6 to 260 VAC 6	Ag	5 A 230 VAC Resistive 5 A 28 VDC Resistive	6,000 operations

Engineering Data

Endurance Curve

MK2ZP and MK3ZP
Maximum Switching Capacity

Endurance Curve

MK2P
Maximum Switching Capacity

Endurance Curve

MK3LP
Maximum Switching Capacity

Endurance Curve

Ambient Temperature vs. Must-operate and Must-release Voltage MK3P AC $(60 \mathrm{~Hz})$

MK3P DC

Ambient Temperature vs. Coil Temperature Rise
MK3P AC110V $(50 \mathrm{~Hz})$

MK3P DC

Malfunctioning Shock

MK3P AC
$N=5$
Measurement: Shock was applied 3 times each in 6 directions along 3 axes with the Relay energized and not energized to check the shock values that cause the Relay to malfunction.
Criteria: $100 \mathrm{~m} / \mathrm{s}^{2}$

Contact Reliability (JIS C4530 Allen Bradley Circuit)

Encased Models, MK2P and MK3P 100 VAC Encased Models, MK2P and MK3P 24 VDC

Contact Reliability (Modified Allen Bradley Circuit)
MK3P 24 VDC

Contact Reliability (Modified Allen Bradley Circuit)

MK2ZP and MK3ZP

MK3P 100/110 VAC

Number of operations ($\times 10^{4}$ operations)

Dimensions

List of Models

- Encased models

Relays with Plug-in Terminals
MK2(Z)P(-2)
MK2P-DO
MK2PN
MK2PA

The above figure is for the MK2P.

Terminal Arrangement/Internal Connections (Bottom View)

MK2P, MK2ZP, and
MK2PA

MK2PN*1
6, 12, or 24 VAC
6,12 , or 24 VDC

MK2P-DO

MK2P-2 and MK2ZP-2

MK2PN*1

50 VAC
48 VDC

MK2PN*2
$100 / 110$ or $200 / 220$ VAC 100 VDC

Note: Only the MK2P-DO has coil polarity. *1. The operation indicators are pilot indicators. *2. The operation indicators are neon indicators.

MK3(Z)P(-2,-5) | MK3P-DO |
| :--- |
| MK3PA |
| MK3LP |
| MK3PN |l

MK3PN*1
50 VAC 48 VDC

100/110 or 200/220 VAC 100 VDC

Note: Only the MK2P-DO has coil polarity.
*1. The operation indicators are pilot indicators. *2. The operation indicators are neon indicators.

Connection Sockets Refer to Common Socket and DIN Track Products for external dimensions and pricing information.

SocketsRelay	Front-mounting Sockets Track or screw mounting		Back-mounting Sockets		
			Solder terminals	Wrapping terminals	Relays with PCB Terminals
2 poles	PF083A	PF083A-E	PL08	PL08-Q	PLE08-0
3 poles	PF113A		PL11	PL11-Q	PLE11-0

Mounting Height with Sockets
Front-mounting Sockets
Back-mounting Sockets

Relay Hold-down Clips Refer to Common Socket and DIN Track Products for external dimensions and pricing information.
Secure the Relay with the Hold-down Clips to prevent the Relay from falling out due to vibration or shock.

PLC

Type

Sockets Applicable Relay			MK2(Z)P	$\begin{aligned} & \text { MK3P } \\ & \text { MK2KP } \end{aligned}$	MK3ZP MK3LP
Front-mounting Sockets	Track or screw mounting Track or screw mounting	PF083A	PFC-A1	---	---
		PF113A	---	PFC-A1	PFC-A1
Back-mounting Sockets	Solder terminals and wrapping terminals	PL08(-Q)	PLC	---	---
		PL11(-Q)	---	PLC	PLC-1
	Relays with PCB Terminals	PLE08-0	PLC-10	---	---
		PLE11-0	---	PLC-10	---

Safety Precautions

Refer to the Common Relay Precautions for precautions that apply to all Relays.

Precautions for Correct Use

Installation Orientation
There is no specified installation orientation.

About the Built-in Diodes*

The diodes that are built into the Relays are designed to absorb reverse voltage from the Relay's coil. If a large surge in voltage is applied to the diode from an external source, the element will be destroyed.
If there is the possibility of large voltage surges that could be applied to the elements from an external source, take any necessary surge absorption measures.

* The MK Series does not have any models with a built-in CR circuit.

Read and understand this catalog.
Please read and understand this catalog before purchasing the products. Please consult your OMRON representative if you have any questions or comments.

Warranties.

(a) Exclusive Warranty. Omron's exclusive warranty is that the Products will be free from defects in materials and workmanship for a period of twelve months from the date of sale by Omron (or such other period expressed in writing by Omron). Omron disclaims all other warranties, express or implied.
(b) Limitations. OMRON MAKES NO WARRANTY OR REPRESENTATION, EXPRESS OR IMPLIED, ABOUT NON-INFRINGEMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE OF THE PRODUCTS. BUYER ACKNOWLEDGES THAT IT ALONE HAS DETERMINED THAT THE
PRODUCTS WILL SUITABLY MEET THE REQUIREMENTS OF THEIR INTENDED USE.
Omron further disclaims all warranties and responsibility of any type for claims or expenses based on infringement by the Products or otherwise of any intellectual property right. (c) Buyer Remedy. Omron's sole obligation hereunder shall be, at Omron's election, to (i) replace (in the form originally shipped with Buyer responsible for labor charges for removal or replacement thereof) the non-complying Product, (ii) repair the non-complying Product, or (iii) repay or credit Buyer an amount equal to the purchase price of the non-complying Product; provided that in no event shall Omron be responsible for warranty, repair, indemnity or any other claims or expenses regarding the Products unless Omron's analysis confirms that the Products were properly handled, stored, installed and maintained and not subject to contamination, abuse, misuse or inappropriate modification. Return of any Products by Buyer must be approved in writing by Omron before shipment. Omron Companies shall not be liable for the suitability or unsuitability or the results from the use of Products in combination with any electrical or electronic components, circuits, system assemblies or any other materials or substances or environments. Any advice, recommendations or information given orally or in writing, are not to be construed as an amendment or addition to the above warranty.
See http://www.omron.com/global/ or contact your Omron representative for published information.
Limitation on Liability; Etc.
OMRON COMPANIES SHALL NOT BE LIABLE FOR SPECIAL, INDIRECT, INCIDENTAL, OR CONSEQUENTIAL DAMAGES, LOSS OF PROFITS OR PRODUCTION OR COMMERCIAL LOSS IN ANY WAY CONNECTED WITH THE PRODUCTS, WHETHER SUCH CLAIM IS BASED IN CONTRACT, WARRANTY, NEGLIGENCE OR STRICT LIABILITY.
Further, in no event shall liability of Omron Companies exceed the individual price of the Product on which liability is asserted.

Suitability of Use.

Omron Companies shall not be responsible for conformity with any standards, codes or regulations which apply to the combination of the Product in the Buyer's application or use of the Product. At Buyer's request, Omron will provide applicable third party certification documents identifying ratings and limitations of use which apply to the Product. This information by itself is not sufficient for a complete determination of the suitability of the Product in combination with the end product, machine, system, or other application or use. Buyer shall be solely responsible for determining appropriateness of the particular Product with respect to Buyer's application, product or system. Buyer shall take application responsibility in all cases.
NEVER USE THE PRODUCT FOR AN APPLICATION INVOLVING SERIOUS RISK TO LIFE OR PROPERTY OR IN LARGE QUANTITIES WITHOUT ENSURING THAT THE SYSTEM AS A WHOLE HAS BEEN DESIGNED TO ADDRESS THE RISKS, AND THAT THE OMRON PRODUCT(S) IS PROPERLY RATED AND INSTALLED FOR THE INTENDED USE WITHIN THE OVERALL EQUIPMENT OR SYSTEM.

Programmable Products.
Omron Companies shall not be responsible for the user's programming of a programmable Product, or any consequence thereof.

Performance Data.

Data presented in Omron Company websites, catalogs and other materials is provided as a guide for the user in determining suitability and does not constitute a warranty. It may represent the result of Omron's test conditions, and the user must correlate it to actual application requirements. Actual performance is subject to the Omron's Warranty and Limitations of Liability.

Change in Specifications.

Product specifications and accessories may be changed at any time based on improvements and other reasons. It is our practice to change part numbers when published ratings or features are changed, or when significant construction changes are made. However, some specifications of the Product may be changed without any notice. When in doubt, special part numbers may be assigned to fix or establish key specifications for your application. Please consult with your Omron's representative at any time to confirm actual specifications of purchased Product.

Errors and Omissions.
Information presented by Omron Companies has been checked and is believed to be accurate; however, no responsibility is assumed for clerical, typographical or proofreading errors or omissions.

